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Abstract

Motivation: Entity relation extraction is one of the fundamental tasks in biomedical text mining, which is usually
solved by the models from natural language processing. Compared with traditional pipeline methods, joint methods
can avoid the error propagation from entity to relation, giving better performances. However, the existing joint mod-
els are built upon sequential scheme, and fail to detect overlapping entity and relation, which are ubiquitous in bio-
medical texts. The main reason is that sequential models have relatively weaker power in capturing long-range
dependencies, which results in lower performance in encoding longer sentences. In this article, we propose a novel
span-graph neural model for jointly extracting overlapping entity relation in biomedical texts. Our model treats the
task as relation triplets prediction, and builds the entity-graph by enumerating possible candidate entity spans. The
proposed model captures the relationship between the correlated entities via a span scorer and a relation scorer, re-
spectively, and finally outputs all valid relational triplets.

Results: Experimental results on two biomedical entity relation extraction tasks, including drug–drug interaction de-
tection and protein–protein interaction detection, show that the proposed method outperforms previous models by
a substantial margin, demonstrating the effectiveness of span-graph-based method for overlapping relation extrac-
tion in biomedical texts. Further in-depth analysis proves that our model is more effective in capturing the long-
range dependencies for relation extraction compared with the sequential models.

Availability and implementation: Related codes are made publicly available at http://github.com/Baxelyne/
SpanBioER.

Contact: renyafeng@whu.edu.cn

1 Introduction

Detecting entities and their relations is the initial step toward
extracting structured knowledge from raw texts. As a hot research
topic in biomedical text mining community, automatic extraction of
entities and relations can facilitate a line of biomedical tasks (Fei
et al., 2020b). In recent years, many related tasks have been pro-
posed, such as adverse drug event (ADE) extraction (Gurulingappa
et al., 2012), protein–protein interaction (PPI) detection (Pyysalo
et al., 2007), drug–drug interaction (DDI) detection (Segura Bedmar
et al., 2013) and the bacteria biotope detection (Deléger et al.,
2016), etc.

Natural language processing (NLP) techniques are extensively
employed for both biomedical entity and relation extraction.
Existing work can largely be divided into two categories: pipeline
methods and joint methods. Pipeline methods divide the task into
two separate subtasks, containing entity mention recognition and

relation classification. The entity mentions are first recognized by
named entity recognition (NER) techniques. Then, relations be-
tween entity pair are examined by classification models. Pipeline
methods have long been explored, but they suffer from the error
propagation problem from entity recognition to relation classifica-
tion (Li et al., 2017; Wang et al., 2018).

To avoid the error propagation between two subtasks and
fully capture the relationship between two subtasks, joint meth-
ods are proposed for the end-to-end extraction, which can better
integrate the information of entities and relations, achieving
improved performances (Katiyar and Cardie, 2017; Ren et al.,
2017). For example, Li et al. (2017) employ a bi-directional long
short-term memory (BiLSTM) network with syntax information
for entity mention detection, and then learn relation representa-
tions of two target entities with their shortest dependency path
(SDP) for ADE task. Zhang et al. (2017) leverage a table-filling
method for jointly decoding relation triplets. However, these
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methods fail to identify overlapping entities and relations, which
are ubiquitous in biomedical texts. Taking as the example in
Figure 1, total eight pairs of overlapping drug-to-drug interaction
relational triplets co-exist in one sentence. Furthermore, we can
find that the entity pair of sympathomimetics and antidiabetic
drugs is far away in distance.

To solve this problem, recent efforts are paid to dealing with the
overlapping relations (Fei et al., 2020a; Takanobu et al., 2018;
Wang et al., 2018; Zeng et al., 2018). For instance, Zeng et al.
(2018) model relation extraction as a triplet generation task.
Takanobu et al. (2018) introduce a reinforcement learning method
to detect nested relations. However, these models fail to give satis-
factory results when dealing with biomedical texts. The main reason
is that these systems have relatively weaker power in capturing long-
range dependencies between entity pairs, which results in lower per-
formance in encoding longer sentences of biomedical texts.

In this article, inspired by the success of neural span-graph mod-
els in a range of NLP tasks, such as coreference resolution (Lee
et al., 2018), semantic role labeling (Fei et al., 2020c), machine read-
ing comprehension (Li et al., 2019) and overlapping entity mention
extraction (Luan et al., 2019), we propose to build a novel span-
graph neural model for jointly extracting overlapping entity and re-
lation in biomedical texts. Unlike traditional sequential models, our
method treats the task as relation triplets prediction. In particular,
we investigate three different relation scorers, in order to mitigate
the long-distance dependencies and enhance the communication of
entity pairs. In addition, two pruning strategies are exploited during

decoding for controlling the model complexity. Note that, Dixit and
Al-Onaizan (2019) first construct a span-level graph model for
detecting the overlapping entities and relations. Compared with

their work, our motivations and network structure are highly differ-
ent. Specifically, their method employs a simple feed-forward net-

work (FFN) to measure the relation between entities, and the model
is very limited in capturing long-distance dependencies between the
entity pairs, while our model considers more thorough communica-

tion on the relation scorers for detecting the relations.
We conduct experiments on two benchmarks (DDI and PPI)

where the overlapping entity relations are overwhelming. Results
show that our method outperforms previous methods and baseline

systems by a large margin. Specifically, we obtain 68.02% F1 score
in DDI and 80.04% F1 score in PPI for relation extraction, respect-
ively. Further in-depth analysis indicates that our model is more ef-

fective in capturing the long-distance dependencies for relation
extraction compared with the existing methods.

2 Model

We model the overlapping relation extraction as a quintuple predic-
tion (to generalize the problem, we also consider the entity type

label. Therefore, the prediction becomes a quintuple) via a span-
graph neural model. Given an input sentence S ¼ fw1;w2; . . . ;wng,
the model aims to output a set of quintuples:

Y ¼ fðes; ls; r; et; ltÞje 2 E; r 2 R; l 2 Lg; (1)

where subscripts s and t represent the source and target, respectively.
E ¼ fðei; . . . ; ejÞj1 � i � j � ng is the set of candidate entity spans,

and R is the set of the relation labels including a null label � indicat-
ing no relation between an entity pair, L is the set of the entity
labels. ls and lt are the corresponding entity type. Note that

Fig. 2. Overall framework of the proposed span-graph based model for overlapping entity relation extraction. For simplifying the illustration, we only show a small subset of

the spans

Fig. 1. An example of DDI. The entities are in the blue boxes, and the directed

arrows in different colors indicate the relations
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ðea; la; r; eb; lbÞ 6¼ ðeb; lb; r; ea; laÞ when the relation between two enti-
ties is strictly directed.

The overall framework of the proposed method is illustrated in
Figure 2. The model first takes as input the features embedding, and
then a BiLSTM layer is used to encode token representation into
contextualized hidden representation. Afterwards, the model enu-
merates all possible candidate entity span representations via a span
attention layer, and builds the span-graph. Then, the span and rela-
tion scorers dynamically measure all possible relation triplets.
Finally, once the relation between an entity pair is decided, the
model outputs the relational quintuple.

2.1 Input representation
Given an input sequence S, for each word wi, we use a look-up table
E 2 R

L�V (L is the dimension of embedding, V is the vocabulary
size) to obtain its embedding ei 2 R

L. Character-level features (such
as the prefix or suffix of a word) have been shown to be effective for
neural NER models (Ren et al., 2018). For example, the suffix ‘roid’
is a sharp morphological information to indicate a kind of hormone
entity, such as the biomedical entity ‘corticosteroid’ or ‘thyroid’. We
use a convolutional neural network (CNN) (Kim, 2014) to encode
morphological information from characters inside a word wi into
character-level representation ci.

Previous work also shows that syntactic features are useful for
relation extraction. We further employ the corresponding part-of-
speech (PoS) labels fp1; p2; . . . ;png, dependency labels
fd1;d2; . . . ;dng. We use two separate look-up table Ep and Ed to
obtain the corresponding embedding vectors pi and di for each
word. Besides, the position information can help to better inform
the relative contribution of each token under global scope. We ob-
tain the position representation posii via a trainable embedding
Eposi. Finally, we concatenate the above word-level features into a
unified embedding vector as follows:

xi ¼ ½ei; ci; pi; di; posii�: (2)

2.2 Encoder
We use a 3-layer BiLSTM to encode the input embedding x to fully
generalize and contextualize the representation. BiLSTM encodes the
input from both directions, yielding hidden representations hfi

and
hbi

, respectively. We concatenate two directional hidden states at
each time step i as the sequence representation hi ¼ fh1; h2; . . . ;hng.
The contextualized representation is intended to capture the informa-
tion shared for all the downstream span learning.

2.3 Span representation
Thereafter, the model iteratively builds all entity span representation
xsp over the following representation:

xsp ¼ ½hstart; hend; hsp; sizeðspÞ�; (3)

where hstart and hend are boundary representation of the start and
the end token, respectively. sp denotes a span, sizeðspÞ is the embed-
ding vector standing for the span width, and hsp is the span attention
representation over the tokens involved in current span sp, which
can be obtained as follows:

vt ¼ V � tanhðW att � xtÞ;

at ¼ softmaxðvtÞ; hsp ¼
Xend

t¼start

at � xt;
(4)

where Watt and V are attention parameters.

2.4 Scorers
We build separate output layers to decide whether a pair of candi-
date entity spans sps; spt is valid, and their relation r. We reach the
goal by measuring the corresponding scores via a span scorer and a
relation scorer, respectively. First, we measure the possible candi-
date entity span via a span scorer, which is a FFN (He et al., 2018):

Usp ¼W sp � FFNðxspÞ: (5)

One key problem in entity and relation extraction is the long-
distance dependency problem. When the distance between two inter-
related entities becomes large, the difficulty to identify their relation
significantly increases. An intuitive solution is to allow more com-
prehensive and sufficient communication between entity pairs.
Here, we explore three types of relation scorers: the biaffine atten-
tion relation scorer, SDP relation scorer and graph convolutional
network (GCN) relation scorer.

2.4.1 Biaffine attention relation scorer

The biaffine attention scorer is first proposed for better parsing de-
pendency (Dozat and Manning, 2016), it measures the relation be-
tween two input representations via a biaffine transformation
function:

UBA
r ðes; etÞ ¼ xT

s �W1 � xt þW2 � ½xs; xt� þ b; (6)

where W1; W2 and b are parameters.

2.4.2 SDP relation scorer

Previous work also shows the usefulness of SDP syntax structure for
relation classification (Miwa and Bansal, 2016). Specifically, we
split SDP into left sub-path and right sub-path, each from an entity
span to the common ancestor node. The input of the scorer is the
embeddings of each token word in the path between two target enti-
ties (note that, the input of the first left or last right entity span is the
span representation xsp, instead of its word embedding xi.). A Tree-
LSTM model (Miwa and Bansal, 2016) is used to encode each path
according to the direction of the dependency labels. Based on the
representations, the max pooling operation yields the representation
of two sub-paths. Finally, we concatenate the pooling results of two
paths as follows:

USDP
r ðes; etÞ ¼ ½MaxPoolðiÞ

i2leftpðes ;aÞ
; MaxPoolðiÞ

i2rightpðet ;aÞ
�; (7)

where leftpðes; aÞ and rightpðet; aÞ are the left and right paths, re-
spectively, and a is the shortest common ancestor node.

2.4.3 GCN relation scorer

GCN (Duvenaud et al., 2015) has been used for modeling the under-
lying dependencies of nodes in the graph while maintaining the se-
mantic information (Marcheggiani and Titov, 2017). For the
dependency graph G ¼ ðV; EÞ constructed between start span node
sps and target span node spt, where V and E are sets of nodes and de-
pendency edges, respectively, a GCN layer encodes nodes represen-
tation as follows:

GCNðGÞ ¼ ReLUð
X

i2NðiÞ
ðWgcn � xi þ bÞÞ; (8)

where W gcn and b are parameters, NðiÞ are neighbors of i and ReLU
is a non-linear activation function. Specifically, we use a two-layer
GCN architecture for yielding a relation score:

UGCN
r ðes; etÞ ¼ GCNðGÞ: (9)

2.5 Training
During training, we use a cross-entropy loss, optimizing the prob-
ability PhðŶ jSÞ of the quintuple yðes ;ls ;r;et ;ltÞ, given a sentence S.
Specifically,

PhðY jSÞ ¼
Y

e2E;l2L;r2R

Phðyðes ;ls ;r;et ;ltÞjSÞ

¼
Y

e2E;l2L;r2R

Uðes; ls; r; et; ltÞP
l̂2L;r̂2R

Uðes; l̂s; r̂; et; l̂ tÞ;
(10)
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where h is the parameters of the model, Uðes; ls; r; et; ltÞ represents
the total score:

Uðes;ls;r;et;ltÞ¼UspðesÞþUspðetÞþUrðes;etÞþFFNðxspðsÞÞþFFNðxspðtÞÞ;
(11)

where the additional FFNð�Þ measures the scores for entity label ls
and lt based on their span representations, as the span scorer

[Equation (5)] is used only to measure the probability of a span to
be an entity mention.

Finally, the objective is to minimize the negative log likelihood
of the golden structure:

‘ ¼ �logPhðY jSÞ: (12)

Note that, the score Phðyðes ;ls ;�;et ;ltÞjSÞ of null relation label � is
assigned to 0, which represents an invalid relational triplet. If the re-
lation scorers find the relational type r 6¼ �, there exists a certain re-

lation type between the pair of entities. In other words, the relation
scorers relate simultaneously to the relation existence and the rela-

tional type.

2.6 Inference
In inference stage, the well-trained model will output all possible en-

tity relation quintuples ðsps; ls; r; spt; ltÞ in Equation (1). In particu-
lar, after the measurement by relation scorer, a softmax classifier is
used to predict whether there is a relation label r between two entity

spans:

r ¼ softmaxðUrÞ: (13)

If the relation label is not null �, the candidate span sps and spt

will be output according to their start and end index. Meanwhile,

another softmax classifier is used to decide the entity labels ls and lt
for the corresponding entities, respectively:

l ¼ softmaxð½Usp; xsp�Þ: (14)

The decoding process is shown in Algorithm 1.

2.7 Pruning and optimization
As our model enumerates all possible entity relation quintuples, its
time complexity is proportional to the number of spans given a sen-

tence of n words, i.e. N ¼ nðnþ1Þ
2 . We take two pruning strategies for

optimizing the computation efficiency.

• We define a beam for storing the span candidates, and the sizes

of the beams are limited by b � n (n is the length of sentence). All

candidate spans are ranked by their unary score U, and only the

spans within the beam are stored.
• We limit the maximum width of a span with a fixed number K,

to reduce the computation for scorers.

Besides, for the non-overlapping relation, once a pair of candi-

date entities is assigned with a relation label, they will be removed
from the candidate set. In addition, if the relation extraction task
does not consider the order between the entity pair, we can reduce

the entity pairs into half before scoring their relations.

3 Experimental settings

3.1 Datasets
We conduct experiments on the DDI and PPI datasets, both of which
are the benchmark for biomedical relation extraction. The DDI

dataset was first published for DDI detection task on SemEval 2013
(Segura Bedmar et al., 2013), including two sub datasets: DrugBank
and Medline. There are four types of relations between drug entities,

including Advice, Mechanism, Effect and Int. The PPI dataset
includes five widely used sub sets: AIMed (Bunescu et al., 2005),
BioInfer (Pyysalo et al., 2007), IEPA (Ding et al., 2002), HPRD50
(Fundel et al., 2007) and LLL (Nédellec, 2005). There is either True
or False relational label between the protein entities in the PPI data-

set. The statistics of the datasets are shown in Table 1. We divide
the DDI dataset into training set and test set by following previous
work (Sun et al., 2018). Likewise, we follow previous settings for

the PPI dataset (Ahmed et al., 2019).

Algorithm 1 Decoding procedure of the proposed model.

Input:

Given input sentence S ¼ fw1;w2; . . . ;wng, the corresponding

PoS labels fP1;P2; . . . ;Png and dependency labels

fD1;D2; . . . ;Dng.
Output:

1: for each word wi in sequence S do

2: Convert word wi into embedding ei.

3: Calculate char representation ci for wi.

4: Convert POS label Pi into embedding pi.

5: Convert dependency label Di into embedding di.

6: end for

7: Concatenate all embeddings into xi.

8: Use BiLSTM to encode x and output contextualized repre-

sentation hi.

9: Build all the entity span representation xsp.

10: Measure the likelihood for candidate entity span xsp by

entity scorer Usp.

11: Measure the relation score for each candidate entity span

pair by relation scorer Urðes; etÞ.
12: Prune the span-graph:

13: 1) Drop the spans whose score U is out of the beam b � n.

14: 2) Cache the spans whose width sizesp < K.

15: for each pair of candidate entities ðes; etÞ do

16: Compute the relation label r for ðes; etÞ via Equation

(13).

17: if r 6¼ � then

18: Compute the entity labels ls and lt for es and et via

Equation (13).

19: Output the triplet ðes; ls; r; lt; etÞ.
20: end if

21: end for

Table 1. Summary of datasets

Dataset # Sent. # E–R pairs # Rel.

Total OL. Total OL.

DDI DrugBank 5675 596 3805 1827 4

Medline 1301 37 232 59 —

Total 6976 633 4037 1886 —

PPI LLL 77 42 330 253 2

AIMed 1943 685 5775 4613 —

BioInfer 1100 817 9666 8576 —

IEPA 486 111 817 331 —

HPRD50 145 76 433 288 —

Total 3751 1731 17 021 14 061 —

Note: OL. denotes overlapping and # Rel. denotes the number of relation

labels.
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3.2 Parameter settings
Word embeddings are randomly initialized with uniform samples
from ½�

ffiffiffiffiffiffi
6

rþc

q
;þ

ffiffiffiffiffiffi
6

rþc

q
�, where r and c are the number of rows and col-

umns in the structure, respectively. The dimension of character rep-
resentations is set to 50. The convolutions in character CNN use
three different window sizes [3, 4, 5], each consisting of 50 filters.
BiLSTM is employed with 200 dimensional hidden states. During
training, we use the Adam (Kingma and Ba, 2014) optimization
method with an initial learning rate of 0.0001. The span beam width
b and the maximum width of span K are determined by fine-tuning
based on the development sets. We use the mini-batch with a size of
16, training 10 k iteration with early stopping. We apply a 0.5 drop-
out ratio for word embeddings and character CNN, and a 0.2 drop-
out ratio for all hidden layers and feature embeddings. All
experiments are conducted with a NVIDIA GeForce GTX 1080Ti
GPU and 11 GB graphic memory. The detailed setting of parameters
is listed in Table 2.

The SDP and GCN relation scorers take as input the dependency
tree features over the input sentence. To this end, we adopt the
state-of-the-art BiAffine dependency parser (Dozat and Manning,
2016) to parse the relevant dataset. Being trained on English Penn
Treebank corpus (Marcus et al., 1993), the dependency parser has
95.2% UAS and 93.4% LAS, respectively. Moreover, a PoS tagger is
used to produce PoS tags for sentences, which is trained on the
Universal Dependency Treebank v1.4 dataset (https://lindat.mff.
cuni.cz/repository/xmlui/handle/11234/1-1827), with an accuracy of
95.15%.

3.3 Evaluation metrics
We adopt the precision, recall and F1 score to evaluate the models
with respect to the entity (Ent.) and relation (Rel.). The prediction
of the relation is considered as correct only when the relation label
and two entities are both correct. Following previous work on these
two datasets, we do not consider the entity labels, which mean that
the task becomes the triplets prediction. We test the performances of
our method 30 times on all the corresponding test set, and results
are presented after significance test with P � 0.015.

We measure the performances for joint extraction of the entity
and relation. For joint extraction task, we combine the sub datasets
for DDI and PPI, respectively. Since pipelined baselines only perform
the relation classification given the gold entities in sentences, we
also conduct experiments where our model only measures the per-
formances on the relation classification for fair comparisons with
them. Technically, given an input sentence fw1;w2; . . . ;wng, we use
BIO labels to tag the tokens as fl1; l2; . . . ; lng (li 2 fB; I;Og), by
which we let the model understand which tokens are the corre-
sponding gold entities. We only consider the metrics for the relation
classification tasks on the corresponding test set.

3.4 Baseline systems
To show the effectiveness of the proposed model, we compare our
model with two types of baselines: the models that consider relation
classification in pipeline procedures and the joint models for entity
and relation co-detection.

3.4.1 Pipeline methods

(i) Liu et al. (2016b) use a CNN model for DDI classification. (ii)
Sahu and Anand (2018) employ LSTM for DDI task. (iii) Yi et al.
(2017) use LSTM with attention mechanism. (iv) Liu et al. (2016a)
propose a dependency-based CNN model for DDI. (v) Dewi et al.
(2017) use a deepened CNN model for DDI. (vi) Sun et al. (2018)
deepen the CNN layers based on the work of Dewi et al. (2017) for
DDI. (vii) Zhang et al. (2018) combine recurrent neural network
and CNN for PPI classification. (viii) Chang et al. (2016) present an
interaction pattern tree kernel method for PPI. (ix) Peng et al. (2015)
build dependency graph for better classification of PPI task. (x)
Hsieh et al. (2017) use a BiLSTM model for PPI. (xi) Ahmed et al.
(2019) construct a tree LSTM and integrate structured attention for
improving the performance of PPI classification.

3.4.2 Joint methods

(i) LSTM-CRF is taken as a baseline sequential labeling model
(Lample et al., 2016). (ii) LSTM-LSTM is a sequential joint model
which uses LSTM as encoder, and CRF or LSTM as decoder respect-
ively (Vaswani et al., 2016). We employ them with end-to-end tag-
ging scheme. (iii) LSTM-SDP is a joint model, using sequential
LSTM to decode entities, and tree-LSTM based on SDP to decode
relations (Li et al., 2017). (iv) GlobalE is a table-filling method with
global optimization and syntax information for end-to-end neural
relation extraction (Zhang et al., 2017). (v) Tagging is an end-to-
end method by integrating the entity and relation extraction tasks
into one unified BIO tagging scheme (Zheng et al., 2017b). (vi)
BiLSTM-ED is a joint method, including encoder–decoder BiLSTM
for entity extraction, and CNN for relation classification (Zheng
et al., 2017a). (vii) DAG is an end-to-end method, which constructs
a directed graph for entities and relations by using a transition-
based parsing framework (Wang et al., 2018). (viii) CopyR is a joint
method by using a sequence-to-sequence network with copy mech-
anism (Zeng et al., 2018). (ix) HRL is a joint model, which applies a
hierarchical reinforcement learning framework to enhance the inter-
action between two subtasks (Takanobu et al., 2018). (x) SpanRE is
a span-graph model for joint overlapping detection (Dixit and Al-
Onaizan, 2019), which is also similar to ours in span-level encoding,
but uses different mechanism in measuring relation between entity
pair.

3.5 Development experiments
We introduce pruning strategies during decoding for improving the
efficiency. Based on development experiments, we study the com-
plexity and efficiency of the model on the DDI dataset.

3.5.1 Entity coverage

Since our model can enumerate all possible entity spans, so the most
nested entity texts can be detected. Table 3 shows the entity and re-
lation coverage under different setting of maximum width of spans.
With a max length of 6, the model covers 99.96% entities and
99.78% relations on the dataset. When the maximum width is set to
10, the entities and relations coverage both increase to 99.99%.

3.5.2 Maximum spans width

As shown in Figure 3, when the maximum width of spans K ¼ 4, the
model obtains a trade-off between the efficiency and the decoding
speed of around 230 sentence per minute. This is plausible because
the span width of majority of entities is <4.

3.5.3 Span beam width

Figure 4 shows the F1 score and decoding speed against different
span beam width ratio b. With the ratio¼0.4, the model can main-
tain a close-to-full performance, yet keeping an acceptable decoding
speed of about 135 sentence per minute. While our model exhaust-
ively creates representations for candidate entity span, it achieves
the dual goals of being memory efficient and capturing most of the

Table 2. Parameters setting of networks

Param. Value Param. Value

dim(ei) 300 dim(pi) 50

dim(ci) 50 dim(di) 80

dim(posii) 25 dim(sp) 200

dim(BiLSTM) 300 dim(Biaffine) 200

dim(TreeLSTM) 200 dim(GCN) 200

dropout(word) 0.4 filter(cnn) 50

dropout(char, pos, dep, posi) 0.1 size(cnn) [3,4,5]

Optimizer Adam Batch size 16

Learning rate 0.0001 Iterations 200
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entities and relations in the space of the spans considered. The obser-
vation coincides with the study of Dixit and Al-Onaizan (2019).

4 Main results

4.1 Joint entity relation extraction
We first report the performances on joint entity relation extraction.
For the flat extraction baselines, we preprocess the datasets into
non-overlapping by keeping only one randomly chosen triplet while

removing the rest. As shown in Table 4, our model (ensemble model)
gives the highest F1 scores on both entity and relation extraction

against all baseline systems, with 75.05% and 68.02% for entity

and relation extraction on DDI dataset, respectively, and 90.08%
and 80.04% on PPI dataset, respectively. Second, all models that
handle overlapping relational triplets significantly outperform flat
extraction methods. Notably, ours outperforms the best flat baseline
BiLSTM-ED, with an improvement of 7.83% on DDI and 10.72%
on PPI on overlapping relation extraction. Furthermore, we can find
that the SpanRE model gives an overall better performance, thanks
to its exhaustive span-graph architecture. This demonstrates the im-
portance of span-graph framework for addressing the overlapping
problem in biomedical entity relation extraction.

Besides, compared with the SpanRE, our model is stronger on
the relation detection tasks by a large margin. In particular, the
model with the GCN scorer is the most powerful. This comparison
demonstrates the effectiveness of our method on modeling the long-
distance dependencies between entity pairs for relation classifica-
tion. As a result, the improvements of our model on relation extrac-
tion are more significant than entity recognition. The above analysis
shows the effectiveness of the proposed joint model for the task.

4.2 Relation classification
We further compare the performances on the separate relation clas-
sification task. The results on the DDI dataset are shown in Table 5.
First, there are a salient performance gaps between joint models and
pipeline models. This coincides with the fact that joint methods can
effectively leverage information of entities and relations, and also re-
duce the error propagation. Second, our model achieves the best per-
formance compared with all previous systems, obtaining a gain of

Table 3. Entity and relation coverage under different setting of

maximum width of spans

Max. width K Ent. (%) Rel. (%)

10 99.99 99.99

8 99.98 99.85

6 99.96 99.78

4 99.56 97.20

2 95.36 93.20

1 87.24 79.06

Fig. 3. Performance and decoding speed under different maximum width of spans K

Fig. 4. Performance and decoding speed under different span beam width ratio b

Table 4. Joint extraction results

System DDI PPI

Ent. Rel. Ent. Rel.

Flat LSTM-CRF 58.51 49.22 72.16 58.36

LSTM-LSTM 59.34 50.64 74.31 60.18

LSTM-SDP 62.03 54.98 79.67 65.21

Tagging 63.38 55.34 78.64 65.92

GlobalE 67.34 59.75 80.34 67.82

BiLSTM-ED 67.86 60.19 81.32 69.32

Overlap DAG 70.91 62.87 84.27 72.84

CopyR 71.64 63.87 83.69 74.92

HRL 71.25 63.11 85.18 73.37

SpanRE 73.05 64.40 87.25 75.36

Ours(UBA
r ) 73.32 65.86 88.62 76.74

Ours(USDP
r ) 73.97 66.40 89.92 78.86

Ours(UGCN
r ) 74.83 67.61 89.32 79.86

Ours(†) 75.05 68.02 90.08 80.04

Note: Flat means the models for flat extraction and Overlap means the

models for overlapping extraction. (†) represents the ensemble model by inte-

grating three scorers.

Table 5. Results of relation classification on DDI

System DDI-ALL

Precision Recall F1

Pipeline Liu et al. (2016b) 75.72 64.66 69.75

Sahu and Anand (2018) 73.41 69.66 71.48

Yi et al. (2017) 73.67 70.79 72.20

Liu et al. (2016a) 77.21 64.35 70.19

Dewi et al. (2017) 86.18 87.20 86.27

Sun et al. (2018) 87.99 82.73 84.50

Joint DAG 91.35 87.82 89.22

CopyR 92.04 89.03 90.43

HRL 91.98 88.34 89.55

SpanRE 92.51 90.31 91.65

Ours(†) 94.85 92.04 93.42
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1.77% in F1 score compared with SpanRE. The main reason is that
the proposed model can enumerate all possible entity spans, detect-
ing all potential relation triplets between them.

The same observation can be found in the results on the PPI data-
sets, as shown in Table 6. First, our model yields the best perform-
ance on all sub sets, with an average of 90.16% F1 score. For the
BioInfer dataset, which accounts for the largest number of overlap-
ping relation triplets in all datasets, our model also gives the best re-
sult (95.21% F1 score), evidently proving the extraordinary
capability for overlapping relation extraction. Finally, the joint
methods universally outperform pipeline models.

4.3 Ablation study
We investigate the contributions from relation scorers and input fea-
tures, respectively.

4.3.1 Relation scorers

From Table 4, we can know that the three relation scorers vary in
performances. Generally, the SDP and GCN scorers are better than
the Biaffine scorer. This is reasonable because the SDP and GCN
scorers can encode more underlying relations between nodes in glo-
bal scope. Additionally, the GCN scorer helps to achieve better per-
formances for determining the relations. By integrating three
scorers, the best performances can be obtained.

4.3.2 Input features

Table 7 shows the results where we add one of these items, respect-
ively. First, the performance can further be improved by integrating
the char and PoS label information. Second, the dependency label
gives a more significant performance boost than other syntax fea-
tures, which coincides with the fact that syntax information is cru-
cial for entity relation extraction. By integrating all these features,
our model achieves the state-of-the-art performances.

4.4 Overlapping relation extraction
We study the ability of our model on overlapping relation extrac-
tion, by calculating F1 score on the sentences under varying numbers
of overlapping triplets, based on the PPI dataset. As shown in
Figure 5, with increasing numbers of overlapping relation triplets,
our model gradually outperforms other systems. Furthermore, the

more the overlapping triplets are in a sentence, the higher improve-
ments our model can yield, compared with other systems. We can
find that SpanRE is much closer to our model (with Biaffine scorer),
and far better than other sequential baselines, showing the superior-
ity of span-graph methods for overlapping relations.

Table 6. Results on separate PPI

System AIMed BioInfer IEPA HPRD50 LLL Avg.

Pipeline Zhang et al. (2018) 56.40 61.30 75.10 63.40 76.50 66.54

Chang et al. (2016) 60.60 69.40 71.40 71.50 80.60 70.70

Peng et al. (2015) 61.10 58.70 72.90 79.90 84.60 71.44

Hsieh et al. (2017) 76.90 87.20 76.31 80.51 78.30 79.84

Ahmed et al. (2019) 81.60 89.10 78.50 82.00 84.80 83.20

Joint DAG 87.27 89.47 83.51 84.67 86.13 86.21

CopyR 84.57 92.26 81.26 86.19 90.88 87.03

HRL 85.84 93.07 81.75 84.45 89.08 86.84

SpanRE 86.71 94.74 82.49 87.60 91.30 88.56

Ours(†) 88.27 96.21 83.90 89.57 92.86 90.16

Note: The performances are measured by F1-score.

Table 7. Results on ablation study

Feature DDI PPI

# word 65.21 75.10

þ charCNN 65.81 76.98

þ PoS label 66.34 77.35

þ position 67.08 78.61

þ dependency label 66.67 78.02

All syntax 68.02 80.04

Note: # word represents using only randomly initialized word embedding.

Fig. 5. Performances against varying numbers of overlapping triplets

Fig. 6. Performances against varying entity distances
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4.5 Impact of entity distance
We compare the performances by differing entity distances on the PPI
test set. Figure 6 shows the results. For all different entity distances,
our model achieves consistently better results than the baselines. Note
that even the distance is increased to five, our model can still accur-
ately detect the relations compared with other baseline systems. We
can find that the performance of the SpanRE model declines when
the distance grows, which indicates that our relation scorers can par-
tially address the problem of long-distance dependency. Besides, scor-
ers with rich structure information (i.e. GCN and SDP) can achieve
better performance than the biaffine scorer, showing the necessity on
providing sufficient interaction between entity pairs.

5 Conclusion

We proposed a span-graph neural model for jointly detecting over-
lapping entity relation in biomedical texts, treating the extraction
task as relational triplets prediction. Three types of relation scorers
were proposed for offering more sufficient communication on meas-
uring the relations between entity pairs. Results on two benchmarks
showed that the model outperformed all the strong baselines, dem-
onstrating the effectiveness of the proposed method for overlapping
entity relation extraction in biomedical texts.
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Deléger,L. et al. (2016) Overview of the bacteria biotope task at BioNLP

shared task 2016. In: Proceedings of the 4th BioNLP Shared Task

Workshop. pp. 12–22.

Dewi,I.N. et al. (2017) Drug-drug interaction relation extraction with deep

convolutional neural networks. In: Proceedings of 2017 IEEE International

Conference on Bioinformatics and Biomedicine. Kansas City, USA, pp.

1795–1802.

Ding,J. et al. (2002) Mining medline: abstracts, sentences, or phrases? In:

Proceedings of Pacific Symposium on Biocomputing. Kauai, Hawaii, USA,

pp. 326–337.

Dixit,K. and Al-Onaizan,Y. (2019) Span-level model for relation extraction.

In: Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics. Florence, Italy, pp. 5308–5314.

Dozat,T. and Manning,C.D. (2016) Deep biaffine attention for neural depend-

ency parsing. arXiv Preprint arXiv: 1611.01734.

Duvenaud,D.K. et al. (2015) Convolutional networks on graphs for learning

molecular fingerprints. In: Advances in Neural Information Processing

Systems. Montreal, Quebec, Canada, pp. 2224–2232.

Fei,H. et al. (2020a) Boundaries and edges rethinking: an end-to-end neural

model for overlapping entity relation extraction. Inf. Process. Manag., 57,

102311.

Fei,H. et al. (2020b) Enriching contextualized language model from know-

ledge graph for biomedical information extraction. Brief. Bioinform.

Fei,H. et al. (2020c) High-order refining for end-to-end Chinese semantic role

labeling. arXiv Preprint arXiv: 2009.06957.

Fundel,K. et al. (2007) Relex–relation extraction using dependency parse trees.

Bioinformatics, 23, 365–371.

Gurulingappa,H. et al. (2012) Development of a benchmark corpus to support

the automatic extraction of drug-related adverse effects from medical case

reports. J. Biomed. Inform., 45, 885–892.

He,L. et al. (2018) Jointly predicting predicates and arguments in neural se-

mantic role labeling. arXiv Preprint arXiv: 1805.04787.

Hsieh,Y.-L. et al. (2017) Identifying protein-protein interactions in biomedical

literature using recurrent neural networks with long short-term memory. In:

Proceedings of the 8th International Joint Conference on Natural Language

Processing. Taipei, Taiwan, pp. 240–245.

Katiyar,A. and Cardie,C. (2017) Going out on a limb: joint extraction of entity

mentions and relations without dependency trees. In: Proceedings of the

55th Annual Meeting of the Association for Computational Linguistics.

Vancouver, Canada. pp. 917–928.

Kim,Y. (2014) Convolutional neural networks for sentence classification.

arXiv Preprint arXiv: 1408.5882.

Kingma,D.P. and Ba,J. (2014) Adam: a method for stochastic optimization.

arXiv Preprint arXiv: 1412.6980,

Lample,G. et al. (2016) Neural architectures for named entity recognition. In:

Proceedings of the 2016 Conference of the North American Chapter of the

Association for Computational Linguistics. San Diego, CA, USA, pp.

260–270.

Lee,K. et al. (2018) Higher-order coreference resolution with coarse-to-fine in-

ference. In: Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human

Language Technologies. New Orleans, Louisiana, USA, pp. 687–692.

Li,F. et al. (2017) A neural joint model for entity and relation extraction from

biomedical text. BMC Bioinformatics, 18, 198–208.

Li,Z. et al. (2019) Teaching machines to extract main content for machine

reading comprehension. In: Proceedings of the Thirty-Third AAAI

Conference on Artificial Intelligence. Honolulu, Hawaii, USA, pp.

9973–9974.

Liu,S. et al. (2016a) Dependency-based convolutional neural network for

drug-drug interaction extraction. In: Proceedings of 2016 IEEE International

Conference on Bioinformatics and Biomedicine. pp. 1074–1080.

Liu,S. et al. (2016b) Drug-drug interaction extraction via convolutional neural

networks. Comput. Math. Methods Med., Shenzhen, China, 2016, 1–8.

Luan,Y. et al. (2019) A general framework for information extraction using

dynamic span graphs. In: Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics:

Human Language Technologies. Minneapolis, USA, pp. 3036–3046.

Marcheggiani,D. and Titov,I. (2017) Encoding sentences with graph convolu-

tional networks for semantic role labeling. arXiv Preprint arXiv:

1703.04826.

Marcus,M.P. et al. (1993) Building a large annotated corpus of English: the

penn treebank. Comput. Linguist., 19, 313–330.

Miwa,M. and Bansal,M. (2016) End-to-end relation extraction using LSTMs

on sequences and tree structures. In: Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics. Berlin, Germany,

pp. 1105–1116.

Nédellec,C. (2005) Learning language in logic-genic interaction extraction

challenge. In: Proceedings of the 4th Learning Language in Logic

Workshop. Lisboa, Portugal, pp. 1–7.

Peng,Y. et al. (2015) An extended dependency graph for relation extraction in

biomedical texts. In: Proceedings of BioNLP Shared Task 2015 Workshop.

Berlin, Germany, pp. 21–30.

Pyysalo,S. et al. (2007) BioInfer: a corpus for information extraction in the

biomedical domain. BMC Bioinformatics, 8, 50.

Ren,X. et al. (2017) Cotype: joint extraction of typed entities and relations

with knowledge bases. In: Proceedings of the 26th International Conference

on World Wide Web. Perth, Australia, pp. 1015–1024.

Ren,Y. et al. (2018) Neural networks for bacterial named entity recognition.

In: 2018 IEEE International Conference on Bioinformatics and

Biomedicine. Madrid, Spain, pp. 2797–2799.

Sahu,S.K. and Anand,A. (2018) Drug-drug interaction extraction from bio-

medical texts using long short-term memory network. J. Biomed. Inform.,

86, 15–24.

Segura Bedmar,I. et al. (2013) SemEval-2013 task 9: extraction of drug-drug

interactions from biomedical texts. In: Proceedings of the Seventh

International Workshop on Semantic Evaluation. Atlanta, Georgia, pp.

341–350.

1588 H.Fei et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/11/1581/6007258 by W
estlake U

niversity user on 03 January 2023



Sun,X. et al. (2018) Deep convolution neural networks for drug-drug inter-

action extraction. In: Proceedings of 2018 IEEE International Conference

on Bioinformatics and Biomedicine. Madrid, Spain, pp. 1662–1668.

Takanobu,R. et al. (2018) A hierarchical framework for relation extraction

with reinforcement learning. arXiv Preprint arXiv: 1811.03925,

Vaswani,A. et al. (2016) Supertagging with LSTMs. In: Proceedings of the

2016 Conference of the North American Chapter of the Association for

Computational Linguistics. San Diego, CA, USA, pp. 232–237.

Wang,S. et al. (2018) Joint extraction of entities and relations based on a novel

graph scheme. In: Proceedings of 27th International Joint Conference on

Artificial Intelligence. Stockholm, Sweden, pp. 4461–4467.

Yi,Z. et al. (2017) Drug-drug interaction extraction via recurrent neural network

with multiple attention layers. In: Proceedings of International Conference on

Advanced Data Mining and Applications. Singapore, pp. 554–566.

Zeng,X. et al. (2018) Extracting relational facts by an end-to-end neural model

with copy mechanism. In: Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics. Melbourne, Australia, pp.

506–514.

Zhang,M. et al. (2017) End-to-end neural relation extraction with global

optimization. In: Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing. Copenhagen, Denmark, pp.

1730–1740.

Zhang,Y. et al. (2018) A hybrid model based on neural networks for biomed-

ical relation extraction. J. Biomed. Inform., 81, 83–92.

Zheng,S. et al. (2017a) Joint entity and relation extraction based on a hybrid

neural network. Neurocomputing, 257, 59–66.

Zheng,S. et al. (2017b) Joint extraction of entities and relations based on a

novel tagging scheme. arXiv Preprint arXiv: 1706.05075.

A span-graph neural model for overlapping entity relation extraction 1589

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/11/1581/6007258 by W
estlake U

niversity user on 03 January 2023


	l
	tblfn1
	l
	tblfn2
	l
	tblfn3
	tblfn4

